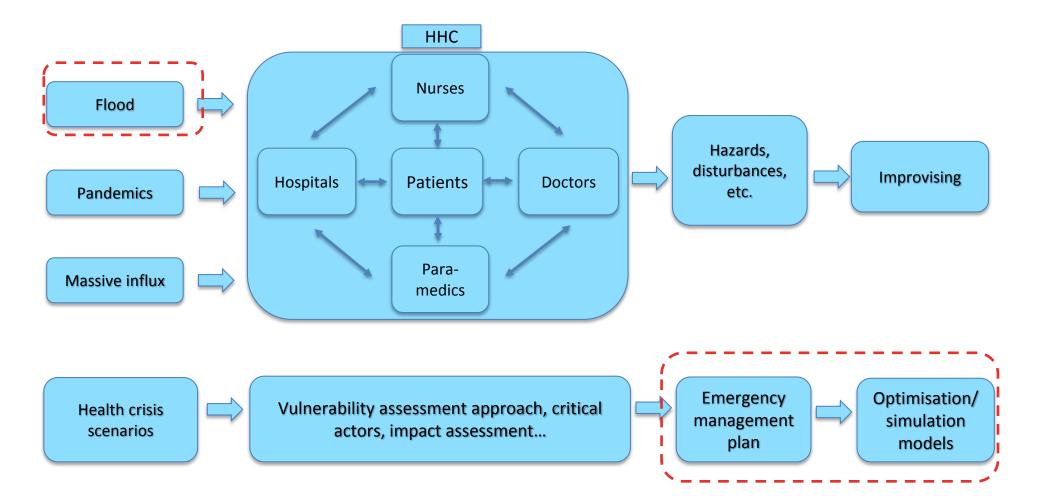


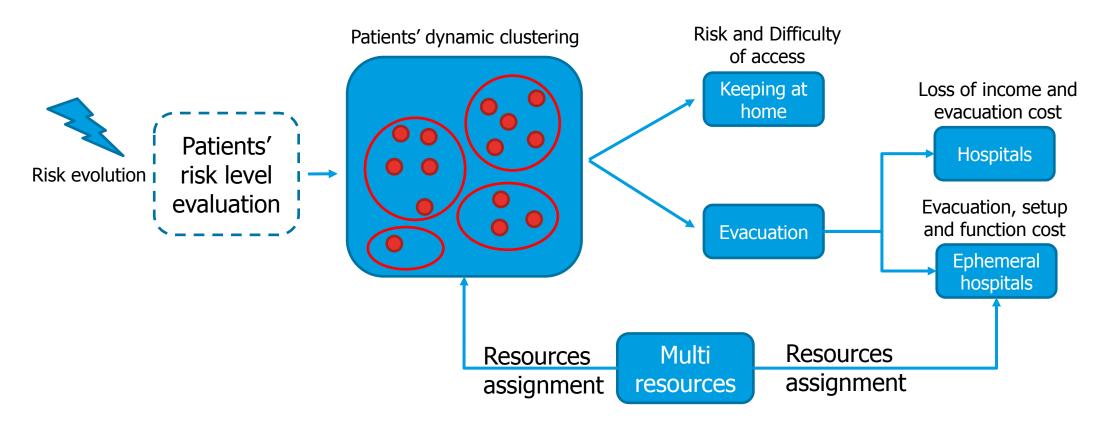
"Securing Home Health Care structures facing forecastable natural disasters"

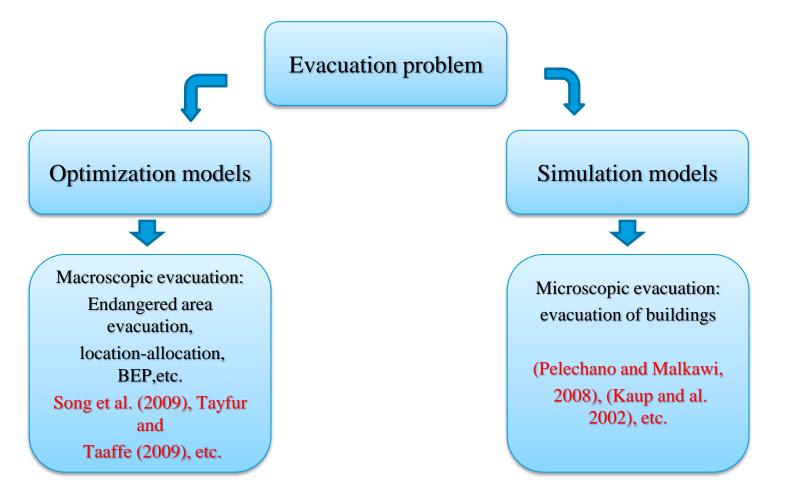
Houssem Barkaoui, Alain Guinet & Tao Wang

université LUMIÈRE LYON 2



- Context
- State of the art
- Model description
- Results
- Prospects




Problem description

 \rightarrow Dynamic Partitioning Problem combined with an assignment problem

State of the art

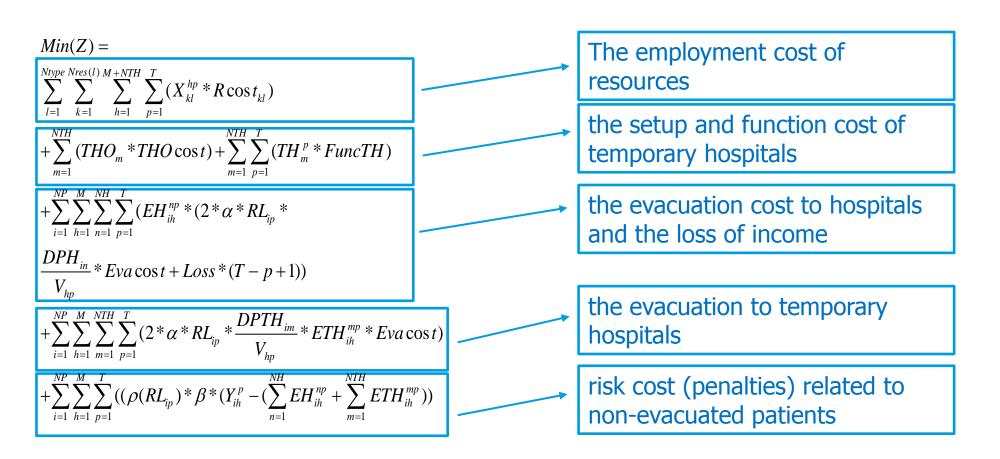
→ the optimization models are the most suitable when considering evacuation problem with resource distribution.

Inputs

- Distance between different patients.
- Distance between patients and regular /temporary hospitals.
- Risk level evolution over time of each patient.
- Important parameters: *a, Tmax, capevac, LPevac*

Outputs

- Patients' partitioning per period.
- Which patients should be kept at home and which patients should be evacuated and where?
- How many resources must be assigned to the non-evacuated areas?
- How many resources must be assigned to the temporary hospitals?



Problem description

Decision Variables Y_{ih}^{p} Keeping at EH_{ih}^{np} home Hospitals W_{hp} RL_{ip} Risk evolution ETH_{ih}^{mp} Evacuation Ephemeral hospitals $X^{\,\scriptscriptstyle hp}_{\,\scriptscriptstyle kl}$ Multi resources

Objective function

Constraints: grouping aspect (clustering)

$$\sum_{h=1}^{M} Y_{ih}^1 = 1; \forall i \qquad \mathsf{p=1}$$

$$\sum_{h=1}^{M} Y_{ih}^{p} = 1 - \left(\sum_{h=1}^{M} \sum_{n=1}^{NH} \sum_{q=1}^{p-1} EH_{ih}^{nq} + \sum_{h=1}^{M} \sum_{m=1}^{NTH} \sum_{q=1}^{p-1} ETH_{ih}^{mq}\right); \forall i, \forall p = 2..T \qquad \mathsf{P>=2}$$

$$\alpha * RL_{ip} * \frac{D_{ij}}{V_{hp}} * (Y_{ih}^p + Y_{jh}^p + RLC_{ij}^p - 2) \le T_{\max}; \forall i, \forall j, \forall h, \forall p \qquad \text{Proximity} <= \text{Tmax}, \text{ same risk level}$$

Constraints: evacuation aspect

$$\begin{split} &\sum_{h=1}^{M} \sum_{n=1}^{NH} \sum_{p=1}^{T} EH_{ih}^{np} + \sum_{h=1}^{M} \sum_{m=1}^{NTH} \sum_{p=1}^{T} ETH_{ih}^{mp} \leq 1; \forall i \\ &\sum_{n=1}^{NH} EH_{ih}^{np} + \sum_{m=1}^{NTH} ETH_{ih}^{mp} \leq Y_{ih}^{p}; \forall i, \forall h, \forall p \\ &W_{hp} \leq \sum_{i=1}^{NP} Y_{ih}^{p}; \forall h, \forall p \end{split}$$

 $\sum_{i=1}^{NP} \sum_{n=1}^{NH} EH_{ih}^{np} + \sum_{i=1}^{NP} \sum_{m=1}^{NTH} ETH_{ih}^{mp} \leq W_{hp} * HV; \forall h, \forall p$

 $\sum_{i=1}^{NP} \sum_{n=1}^{NH} EH_{ih}^{np} + \sum_{i=1}^{NP} \sum_{m=1}^{NTH} ETH_{ih}^{mp} \ge (W_{hp} - 1) * HV + \sum_{i=1}^{NP} Y_{ih}^{p}; \forall h, \forall p$

No return is allowed

Patients are evacuated from the area where they are located

The group must contain at least one patient to be evacuated

Assignment to hospitals and temporary hospitals

Unity of the group, split evacuation is authorized

Constraints: temporary hospitals management

$$\sum_{p=1}^{T} TH_{mp} \leq THO_{m} *T; \forall m$$

Preparation of temporary hospitals before their opening

$$\sum_{q=p}^{T} TH_{mq} \leq TH_{mp} * (T-p+1); \forall m, \forall p$$

No return is allowed

$$\sum_{i=1}^{NP} \sum_{h=1}^{M} ETH_{ih}^{mp} \leq TH_{mp} * HV; \forall m, \forall p$$

Opening of temporary hospitals before patients evacuation

Constraints: capacity aspect

$$\sum_{i=1}^{NP} \sum_{h=1}^{M} \sum_{p=1}^{T} ETH_{ih}^{mp} \leq Nbeds _TH_{m}; \forall m$$

 $\sum_{n=1}^{NP} \sum_{i=1}^{M} \sum_{j=1}^{T} EH_{ih}^{np} \leq Nbeds - H_n; \forall n$ i=1 h=1 p=1

Number of beds of temporary hospitals

Number of beds of hospitals

$$\sum_{h=1}^{M+NTH} X_{kl}^{hp} \leq Cap_{kl}; \forall k, \forall l, \forall p$$

Working hours of nurses, doctors, etc,

 $\sum_{i=1}^{NP} \sum_{h=1}^{M} \sum_{n=1}^{NH} (2*\alpha*RL_{ip}*\frac{DPH_{in}}{V_{hp}}*EH_{ih}^{np}) + \sum_{i=1}^{NP} \sum_{h=1}^{M} \sum_{m=1}^{NTH} (2*\alpha*RL_{ip}*\frac{DPTH_{im}}{V_{hp}}*ETH_{ih}^{mp}) \leq Capevac; \forall p \qquad \text{Working hours of evacuation resource}$

evacuation resources

Constraints: resources' assignment

$$\sum_{k=1}^{Nres(l)} X_{kl}^{hp} \ge \sum_{i=1}^{NP} (\alpha * RL_{ip} * Y_{ih}^{p}) - W_{hp} * HV; \forall l, \forall h, \forall p$$

Regulation between evacuation and home support

$$\sum_{k=1}^{Nres(l)} X_{kl}^{mp} \leq TH_{mp} * HV; \forall l, \forall p, \forall m = M + 1..NTH + M$$

$$\sum_{k=1}^{Nres(l)} X_{kl}^{mp} \ge \sum_{i=1}^{NP} \sum_{h=1}^{M} \sum_{q=1}^{p} ETH_{ih}^{mq}; \forall l, \forall p, \forall m = M + 1..M + NTH$$

We do not assign resources to closed temporary hospitals.

assignment of resources to temporary hospitals

Constraints: risk management aspect

$$RL_{ip} - 2 \le \sum_{n=1}^{NH} \sum_{h=1}^{M} \sum_{q=1}^{p} (EH_{ih}^{nq}) + \sum_{m=1}^{NTH} \sum_{h=1}^{M} \sum_{q=1}^{p} (ETH_{ih}^{mq}); \forall i, \forall p$$

Patients with high risk-level must be evacuated

Dimension the minimum capacity of the temporary hospitals

Results

Results for different "*capevac*" values for 65 patients, *Tmax*=0,5

	<i>Capevac</i> (hours)	Penalty Cost	Other costs	Total cost	LPevac	
ſ	8	INF*	INF*	INF*	INF*	
	16	1960000	498335	2458335	5	
	24	1120000	499222	1619222	4	
	32	1120000	502531	1622531	3	
	40	1120000	501701	1621701	3	

Results

Impact of Tmax and a on the objective function

a\Tmax	0,2	0,3	0,4	0,5
1	1684580	1619222	1621759	1621759
1,25	1975469	1971502	2035737	1975342
1,5	2463680	2394439	2394781	2392318
1,75	2891269	2796361	2815433	2815433
2	3519565	3446098	3375698	3445771

Conclusion and prospects

- Our model is based on a real life scenario which has been defined with our partner: Soins et Santé. Therefore the model is well suited to the Home Health care practices.
- The improvement methods that we propose can be easily applied in the field.
- We take into account, the grouping, the location-allocation, assignment aspects in the same framework.
- Take into account the routing aspect within each group of patient.
- Consider other criteria than the distance in the selection of temporary hospitals .

Do you have any questions?

université LUMIÈRE LYON 2

